History-Driven Particle Swarm Optimization in dynamic and uncertain environments

نویسندگان

  • Babak Nasiri
  • Mohammad Reza Meybodi
  • Mohammad Mehdi Ebadzadeh
چکیده

Due to dynamic and uncertain nature of many optimization problems in real-world, an algorithm for applying to this environment must be able to track the changing optima over the time continuously. In this paper, we report a novel multipopulation particle swarm optimization, which improved its performance by employing an external memory. This algorithm, namely History-Driven Particle Swarm Optimization (HdPSO), uses a BSP tree to store the important information about the landscape during the optimization process. Utilizing this memory, the algorithm can approximate the fitness landscape before actual fitness evaluation for some unsuitable solutions. Furthermore, some new mechanisms are introduced for exclusion and change discovery, which are two of the most important mechanisms for each multi-population optimization algorithm in dynamic environments. The performance of the proposed approach is evaluated on Moving Peaks Benchmark (MPB) and a modified version of it, called MPB with pendulum motion (PMPB). The experimental results and statistical test prove that HdPSO outperforms most of the algorithms in both benchmarks and in different scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Hybrid Modified Binary Particle Swarm Optimization Algorithm for the Uncertain p-Median Location Problem

Here, we investigate the classical p-median location problem on a network in which the vertex weights and the distances between vertices are uncertain. We propose a programming model for the uncertain p-median location problem with tail value at risk objective. Then, we show that it is NP-hard. Therefore, a novel hybrid modified binary particle swarm optimization algorithm is presented to obtai...

متن کامل

Optimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods

In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers

In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 172  شماره 

صفحات  -

تاریخ انتشار 2016